有13顆外觀、大小相同的紅色小球,其中12顆的重量相同;另1顆的重量與其他12顆的不一樣,而且不知道重量是比較輕還是比較重。現在給你一個天秤,再給你3次使用天秤的機會,請找出那顆不同的球。
解答(想要解密請聯絡作者):
KFwBbAIsK7y9OQNNtplcOvR9CJ3oKy595g-lqo6ZWBLacyde65kqd-oSnv3nuD17AhhGSIH9A90SPQwolJ1cAtlyB37pmwF1xgpIVYr-KxG1KSMqgb-Ke_sTSNm__naUZzkovyidFJTZdi9N65wzd-oSSkaD_CAJszQpKoafXRrKehNu6aw_feYZSGOi_QEGszQpKoapXD72cCpk57g9d9ITXEee9kkwvSAHILKVXhfsL3xX6YM_duALRm6I_jkotSkMKLudWBLYcgNj6qE7dPY0SkqG_zAttSkOKLudUxrdehNt6aw_duQTSGiq9gcevzMtKZCFXivpfQ5u4aU3duE2R26m_DoVvQUsKZa2VC75chpL6qEWduABRm6I_isRvQ8rKouvXyr3cRdP57g9feYOSmmM_yUOvi0iKreqUzP7ehND65A8duE2R26m_DoVvQUsKpKxVC77chpL6JEtfeY3SHqK_QM_tSkjK7a_XCbafCNLF5qUue90YSGSh-jsQUJ9MT478OhWyPQIoorVfKtpzA27roAh6-zRAc4L-Fz6-LyMporhdGeV6E27prD924jhIVYr9AxuzNCkonppTGt16E2zprD924jhIVYr8Mh--LSYmr59cAtlxEUnpvh995hlHRKv8AiGyNA4gspVfKfl9DmfrmDx1yhZLcoP_LS61KQwou51fKvdyNUvrlh13_gNKSqfwGhS5FS0oorVfKtNzA27pvh90wxdKf7__MRizFwwqgbZTEedzM0brmDx1yhZLd6P-IRa_EAYmr59ULtZwIFnrngF33yNLd6P9AxKzNCknhp5eHfxxF0_nuD137SdIeZ3-GSi_OzUplrZcDsVyNUvpiTh24hVHern-HDa5FS0nhbxeK-l9Dm7hpTd06AdIaKr-IRazFwwmr59dCvVwLkjpiTh95g5Ld4P8AiGyNA4gspVeG91zN2DotBh3xj1IaKr-IRazFwwmr59dCvVwLkjpgz9x2hdHRKv-Fz6-LyMporhfKtdwFnzmuBp95hlLdK3xGjq_FCgonppeDvJ6E2zprD91wBFKRoP9AxuzNCkrtrRULtZxF1vphh572wZGSIPwPB25FS0oorVfKtNzA27rnzZ35AtAc63-Dha_HCIrtpBSM9xxF2Lrli133S9KSqfwGhS1KSMqub9eHelxF0_nuD130hNKR6v_Lyy_CQcqqrBcNf5xF0XtmTl3_BdJUZL8AiGyNA4gspVfKfl9DmfrkBJ24h5IVYrwOTGzNCkonppdCvVwLkjpgz995g5KaYz_JQ6-LSIqt6pTM_t6E0PrkDx00gNHc5v_MwSzEiIolJ1SEPl8DknogRR32xJIVYr6OxBQn0xPjvw6FbI9AiiitV8q2nMDbuqhNnfjJkdur_YHHr05Ayu0lV0--3MlReGlGnXvEUpGg_0DG7M0KSeGnlQu-HIaS-uQNnbiHEZuiPERLbwaNCCylVQu-3IaS-uQNnbiHEZuiPw9H7IiMCCyulwn3nAmQuqhMnv7E0dlsf80CbkVLSq-qF0K9XoTbemsP3fTGEt3h_AaFL8HIyCyuFwn3nIDY-uCIHv7E0BzgvEzFbUpDCi7nV4b13EXRue4PXfIGUBzrP4OFr05AyqVglIz3HEXROuXAHX9MUxPjPEwN78sHCevuFQu1n0OZ-m9AXfbEkhViv4rEbwNACCyuFwn3nAmQuqhMnv7E0t3o_4hFr4tLyqOklQu1nA0b-mbAXf0FkpPn_wnOr05Ayu0lV0--3IIa-iAOXr4PklAlf0DGb4rKSu0n1Qu1n0vQ-qhL3fSPEhbpv4XPr4tLymiuFw1_nAodemDP33mNExPj_YHML0gKyaJlFIV1XoTQ-uWFHbhMEhQq_A6Ab8UKCieml0K9X0TWuebP3TCOkZIg_o7EL05Ayu2kF0--3AffuiSBH3mNEh6iv4hFr8cIiqLsFIz3HAodeqnPXT1AUxPjPEwN78sHCevuFQu1nEUbOa4E33mNEh6iv4hFr05Ayu2kFIz3HM3YOuYPHXAEUBzlf0DH78sHCevuFQu1nAmSOiBFHvYNkpPhfEHEbIpOimGj1Mu2XwoQumDP3XKFklXofw6Fb0PKyyOm7GYuRUvKqibXQzGcgNj6qM3dPY0S3eD_AIhsjQOILKVUxLWcRdb670Sdf0xSFWK_DksvAMzKIWZXRfRfSdI6bUXduIVSWOv_iAqvwUjILKVUzPycgt165g8dcARSF-N_DQ9shYSKZa2VC77chpL6JEtdMI6QHOs_g4WvQ8rKKK1XgnBfA5J4aU3d8E1SE208DkxvxAGJq-fXg7ycgNj6qM3dPY0SGiq_yIQvCc9KZKQXDXhcCRa55g1cdoXSGOi_QMbvDkOJpSxXyzlcyRw664JdfgvSmGU8DgvvRcVKJKGXALZcjVL4aUYde8RS3ej_iEWvi0vJq-fUxrdehNu6aw_dcARSGOi_CAJszQpKaGNWBLYfSRq66AIevs0QHOC9gcwvSArKJSdXD72cDRU57g9dMI6Sk6J_isRtSk0KJWhXh3XcjVL4aU3etEwS3eD_AIhsjQOILKVXhvdczdg4aUade8RSFWK_hc-vw40Jq-fXQr1cC5I6YM_cdoXpcXtmTt33BhLcYjxExyyPjkoorVfKNZzA27qoTZ34yZHbq_2Bx6yFSMrto1eNvNyCGvpgz932CtJWZL-MBK8ECQpmqBTPNBzNk3hpTd6-z1Ia7T8OhW9DysonppeHfV9LHLrhRN95jdIeor9Az-9Dysqh5RfKtN8DknhpTd3wTVITbT8FRG_FT4qkrFcPvZxFUPotRp1_TFJVozxGTm9MhQqhqleHfxxF0_nmzF95hlHT4L9Awa_GgAokbxeE91yP0zogRR65gBJV6HwPB-5FS0oorVfKtNzA27rqQp35AtAc6z-Dha9Dysqh5RfKtN8DknqoRZ31QNKSLT8PjuzNCkrsJ9cNf56E0PrqQp31TpLdKv-JDezFDwqj55cCN5wM2frihF24BNMT4wTsXX2OUt1gv4TPLIyDCm9jFQuwJ9MT478KR69OQMrtplcOvR9CGzoqi524hVJZ632Bx68HT4qjoheIt2knSavn1IV13woQOqhO3TyNkhViv4rEb09HiiMo1wOxXI1S-mJOH3mGUpAqChSM9xyB37pmwF32xJIVYr-KxG5FS0qi5FeIt1wJkLrgiB7-xNKR4j_MwK1KQ4ou51ULtZyA2Pqoy97-xNKR77-Fz6_EAQmr59eGtxzJ1_hpRl17xFAc4L8PiSzMTcolJ1fKM58DknpmwF95jZIeor6OxC9OQMrtpldPvtwKkfokgR95jRIeorxMxW1KQ0ou51fLNxyCGvhpTd3_BdJUZL8AiGyNA4gspVfKfl9DmfrmDx1yhZJV6H2BzG9ICsrtrRfKM58DknpiTh1wBFKSrj9Az--LS8mr59ULsFwCU3ohyd24hhKdr3xGjO1KSMqh55fKfl9DmfrmDx1yhZKU6b2BzO9ICspho9ULvhyGkvqoRZ95hlLd6j-DxKzGSsnsoxSFddyBGDtmTmYUHYvT-uYPHryOEhjov0DErw5Diq3qlMz-3oTQ-m1F3bgGUljr_8wLbUpDii7nV8q93I1S-qhMnv7E0hfjfEzFbUpDCi7nV8q93I1S-uQNnbiHEZuiP4rEb4rKSipvVQu1n0kauugCHr7NEBzgv0AMbI0ByqPnlwC2XESQuiPB33mNkh6iv0DP70PKyqBv142zHAqZue4PXHaF0hjov0DG7w5DiipvV0L2HAffuiTMXvYNkpAofE4L7wJJiqPnlwC2XEXYumDP3ffPEZuiPYHHr8aOSqJo14X7HEXYuqhO3v7E0dHifw0NL4tLyavn14l6HIZXOm7AXf0D0lXof4nDb0PKyieml8q2n0aeOm-H3HaF0dEq_wCIbI0DiCylV0gyHIIa-mDP3vYNkZuiP8jPb8UKCiemlQuwXEXQuugCHr7NEBzgvwyFbwNACmjul4O8nIIa-mDP3vYNkZuiP8jPb8UKCiUnVgS2H0kaum1F3bgGUljr_0DH78sHCevuFQu1nEUbOa4E3fbEkhfjfwnOrUpDCi7nVwI3nAmQuqhMnv7E0t3o_YHHr4tOyiRvFITyXwoQueeNHHaF0hjov0DG7w5DiqIlF4sxHoTbOmsP3fTGEt3h_AaFL4tAiqBj14V4HAqZue4PX3mGUp4qPw0Ib4tLyavn14a3HAnauiNBXfGPUprp_4cNr4tJSyOm1402HMxU-ugCHr7NEBzgv0AMbI0ByqHsF8q0XI1S-ebGHv7E0hfjf8jPb8UKCiUnVQuwXAJTeiHJ3biGEp2vfEaM7UpIyqHnl0azH0TWuiRLXvdGEhVivA5MbM0KSmWtl4T3XI1S-2ZOZi5FS_F7Zk7d9sSR2ej_hc-vi0vKaK4XyrXcBZ85rgafeYZS3St8Ro6vxQoKJSdXALZcB9-64UTfeY0SHqK_zMEtSkNKLudXyr3ehND6qEdevINRkOK_QMSvi0kILK4WBLbehNt6aw_evAlR3Ob8REisxIiLI6bXD72cRVD6LUad9UDQHOv_g4WvQ8rKoeUXyrTfA5J64s3feY3SHqK_iEWvxwiKouwUjPcfSdI4aUYde8RSFWK_QEGszQpK7CfXDX-di9N5pIed-MmR26v9gcevi4MJ6-xXhPdcjVL6Yk4dMI6QHOv_g4WvQ8rKKK1XgnBfA5J6JEtdMI6QHOs_g4WvQ8rKKK1XyrTfA5J6JEtdfY5SlSV8BoUuRUtKKK1XyrTcwNu6582dNEqQHOs_g4WvQ8rJoy6XhfzfA5J65YUetkoSVeh_DoVvQ8rKJ6aXyzccghr7Zk5etEwSna98RoztSkjKo-eXAjecj9M66kKdMI6QHOv_g4WvQ8rKKK1XgnBfA5J4aUgetEwS3eD_AIhsjQOILKVXhvdehNu6aw_dcARSGOi_CAJszQpKZa2XA7FcjVL4aU3feY3SHqK_iEWvTkDK7aQWBLbcgNj64Ige_sTSkCh8TgvvA0AKo-eXAjeehND6LQfdMMXSken_i86vTkDK7aZXT77cghr6IA5evINRkOK_QMZvispKJSdVC77di9O4aUZde8RRkiD8DwdtSkjKoG2Xyn_cyFn654Bd9sSSF-N_iEWsik6JomUWBLYcjBq55goeuYARkiD9gceviwwKr6oUxHncCdr6I8Md8k_Rm6I_yM9vxQoKJSdXyjcdi9NBPo7ElB2L0_mkh519jlLdYL_FzO-LSIqt6pTM_t6E0Pqohh6-z1KTon-IRa9BSwqkrFULvtyGkvpgz930xhLd4fwGhS8HTkplrZULvhyGkvpgz930xhKSqfwGhS-LQIgspVfKvxxF1vrlhR1xTBKTon-IRa9BSwplrZTLs9zN2DnnjZ95hlJQavxKgW_EyIqhrBcBvJyA2PqoTt09jRIaKr_IhCyPTcmgp1fKtFxEUnpgz995jRMT4_2BzC9ICsqqrBcNf5wLXHojyd10RVJfI_2Bx6_GgArtbxcDf98LlzrnA100xVKU6b-IRa9ICsqhrxYEthyA2PqoTJ09jRKQJj2BzO9ICsqnJVULvhyGkvpgz919jlLd47wGhS1KSMnhp5ULvtyGkvrizd95jdIeor-IRa9OQMrtJVSM9xxEUnpvh9x2hdHRKv8AiGyNA4gspVeE91yP0zrqQp0wjpAc6_-Dha9DysoorVfKtN8DknhpSB24hhKdr3xGjO9Dysnp6hULtZxEVLpnBx19jlLdYL_FzO9Mgspl5tdG9pwEVjrkQt1wBFKTon-KxG-LCQmiZRSFdV9J0jprD930jBAc4LxMDeyPQIqj55cCN5zOXPhpRp17xFAc4L8MhWyKSwnsoxdGsx9E0znnjZ1wBFGTa3_LSu-LQIolJ1ULvtyGkvpiTh0wjpKTon-IRa1KTQqgZRfK9F6E0Pmkh532xJIVYr_LS61KQ0ou51ULtZwJkjmvzp6_RVKYJH2BzC9ICso